Speaker: Eric Fullerton

Center for Memory and Recording Research (UCSD)

June 13th 2025 2 PM Room Alnot 4-A014, IJL

Spin-orbit torque phenomena in complex oxide heterostructures

Biswajit Sahoo^{*a*}, Kate Matthews^{*a*}, Sarmistha Das^{*a*}, Robin Krause^{*b*}, Padma Radhakrishnan^{*c*}, Koral Aykin^{*c*}, Akilan K^{*d*}, S. Petit-Watelot^{*d*}, J.-C. Rojas Sanchez^{*d*}, A. Pofelski^{*e*}, Y. Zhu^{*e*}, A. Hoffmann^{*b*}, A. Kent^{*c*}, A. Frano^{*a*}, and Eric E. Fullerton^{*a*}

^{*a*}University of California San Diego, La Jolla, CA, USA ^{*b*}University of Illinois Urbana-Champaign, Urbana, Illinois, US ^{*c*}New York University, New York, NY, USA ^{*d*}Institut Jean Lamour, University of Lorraine, Nancy, France ^{*e*}Brookhaven National Laboratory, Upton, NY, USA

Energy-efficient magnetic spin orbit torque nano-oscillators and coupled oscillator arrays are being explored for low-power neuromorphic computing systems [1, 2]. Commonly studied oscillator systems are mostly based on metallic bilayers of ferromagnet (FM)/ heavy metals (HM) (FM=CoFeB, Py and NM=Pt, Ta, W). I will discuss recent efforts to replace the metallic layers with complex oxides with coupled spin, electron and lattice degrees of freedom [2]. Large spin-charge conversion, low damping, and small resonance linewidth are essential constituents for the development of energy efficient oscillators. In this regard half-metallic perovskite ferromagnet, La_{0.67}Sr_{0.33}MnO₃ (LSMO) films are studied as the magnetic free layers [3] combined with transition metal oxides such as iridates (e.g. IrO₂, SrIrO₃, *etc.*) and NdNiO₃ (NNO) as the spin-orbit torque layer providing potentially new functionality. For example, IrO₂ has a unique electronic structure, where

the density of states near the Fermi level is dominated by only 5d electrons with strong spin-orbit coupling and large charge to spin conversion [4]. NNO exhibits a first-order metal-insulator transition near 200K in bulk. The onset of the metal-insulator phase transition is also accompanied by a complex E' type anti-ferromagnetic ordering in this material. We observe thickness and temperature dependent modulation of spin-charge conversion through the phase transition of NNO and harness the disorder in NNO to generate a pronounced enhancement of the inverse spin Hall effect signal at the transition temperature [5]. Finally progress towards an all-oxide nano-oscillator will be discussed. This work is supported by the U.S. Department of Energy under Grant No. DE-SC0019273.

- [1] J. Grollier *et al.*, Nature electronics 3, 360 (2020).
- [2] A. Hoffmann et al., APL Materials 10, 070904 (2022).
- [3] Sahoo et al., Adv. Mater. Interfaces, 2401038 (2025).
- [4] Sahoo, Frano and Fullerton, Appl. Phys. Lett. 123, 032404 (2023).
- [5] Sahoo, et al. submitted for publication (2025).

Séminaire organisé dans le cadre du programme interdisciplinaire MAT-PULSE

MAT-PULSE Materials and Physics @ Ultimate Scale: Nanotech for a sustainable digital world