

Workshop: Characterization of nanomaterials Caractérisation des nanomatériaux November 6, 2025

Campus Artem, Amphi 100, Nancy

Program:

- 14:00-14:15: Slavisa Jovanovic, IEEE I&M Chapter France Introduction
- <u>14:15-15:00</u>: **Mathias Bonmarin**, *Lock-in thermal imaging to investigate stimuliresponsive nanomaterials in complex environments.*
- <u>15:00-15:30:</u> **José Moran**, Calibrated measurements of dopant concentration on GaAs vertical nanowire arrays by scanning microwave microscopy
- <u>15:30-16:00:</u> **Pascal Boulet**, Nanomaterials characterization within the XGamma competence center of IJL
- <u>16:00-16:30:</u> Pause café
- <u>16:30-17:00</u>: **François-Xavier Ouf** & **Valérie Godefert**, *NanoMesureFrance*: A single entry point for structuring the nanomaterials industry around reliable data
- 17:00-17:30: **Daniel Lacour**, *Magnetic textures imaging by Scanning NV magnetometry*.

Mathias Bonmarin

Lock-in thermal imaging to investigate stimuli-responsive nanomaterials in complex environments.

Abstract: Stimuli-responsive nanoparticles (NPs), capable of generating heat upon exposure to light or alternating magnetic fields, are increasingly used in diverse applications - from medicine to materials science. However, their detection and characterization in complex environments remain challenging due to factors like low concentrations, heterogeneous matrices, and interference from surrounding media. This talk introduces Lock-In Thermography (LIT) as a powerful, non-destructive imaging technique for analyzing such NPs. By synchronizing thermal stimulation with infrared detection, LIT enhances sensitivity and spatial resolution, enabling precise quantification and localization of NPs in both liquid and solid states. We present custom LIT setups for magnetic and photothermal NPs, discuss algorithmic approaches for signal demodulation and compensation, and highlight innovations such as dual-wavelength stimulation for absorbing media. Compared to conventional methods, LIT offers label-free, in-situ analysis with minimal sample preparation, making it a versatile tool for nanoparticle research in real-world conditions.

Bio: Mathias Bonmarin studied at the graduate school of science and engineering "POLYTECH Marseille" part of Aix-Marseille University (France) and obtained his master's degree in biomedical engineering in 2002. He then moved to Grenoble Institute of Technology to gain an additional master in optics, optoelectronics and microwave. After a year working as a scientific assistant at the Fresnel Institute in Marseille, he decided to broaden his perspective and studied economics at the University of Louvain-La-Neuve in Belgium. Mathias moved to Switzerland in 2006 to do his PhD in physical chemistry at the University of Zurich. He joined the School of Engineering of the Zurich University of Applied Science (ZHAW) as research associate in 2010 before being appointed senior lecturer at the Institute of Computational Physics in 2014. Between July 2018 and July 2019, Mathias was a Fulbright visiting research scholar at the College of Engineering and Applied Sciences of the University of Cincinnati in the US. Since July 2019 he is Professor of optoelectronics and leads the Sensors and Measuring Systems group at ZHAW. His research interests focus on the development of innovative sensors and instruments for the medicine and biology.

José Moran

Mesures étalonnés de la concentration de dopants sur des réseaux de nanofils verticaux en GaAs par microscopie à sonde locale microonde

Abstract: Les réseaux de nanofils semi-conducteurs en GaAs alignés verticalement, contenant des jonctions p-n axiales ou radiales, constituent les briques élémentaires des nouvelles cellules photovoltaïques à efficacité accrue. Néanmoins, l'exactitude de la mesure de la concentration de dopants de leurs jonctions est cruciale pour l'identification des nanofils défectueux et l'analyse de leurs impacts sur les performances des cellules solaires. Tout d'abord, des mesures électriques à résolution nanométrique ont été réalisées par microscopie à sonde locale micro-onde (ou SMM, « scanning microwave microscopy ») sur des multicouches de GaAs dopées, afin d'étalonner le SMM en terme de concentration de dopants. Ensuite, les mesures SMM ont été réalisées sur les réseaux de nanofils. Enfin, nous avons pu extraire les niveaux de dopage des nanofils en GaAs dopés p, avec des valeurs de $(5,0 \pm 1,2)\cdot1018/\text{cm}3$ et $(4,6 \pm 1,1)\cdot1018/\text{cm}3$, en accord avec les valeurs estimées d'environ $3,3\cdot1018/\text{cm}3$ et $1,8\cdot1018/\text{cm}3$, respectivement.

Bio: José Morán est titulaire d'un doctorat en physique à l'Université Paris-Sud d'Orsay, en France, en 2013. Ses travaux portaient sur les propriétés structurales et électroniques du graphène étudiées par microscopie STM/AFM au CEA-SPEC de Saclay. En 2017, après un post-doctorat au CEA-SPEC de Saclay, il rejoint le Laboratoire national de métrologie et d'essais (LNE) en qualité d'ingénieur-chercheur. Ses activités portent sur la nanométrologie électrique ainsi que sur la caractérisation électrique des nanomatériaux tels que les semi-conducteurs, matériaux 2D, et les couches minces diélectriques, utilisant la microscopie à balayage micro-ondes (SMM) et la microscopie à force atomique à pointe conductrice (C-AFM). Actuellement, il est responsable de la plateforme de nanométrologie électrique NAEL au LNE.

Pascal Boulet

Caractérisation des nanomatériaux aux sein du centre de compétences XGamma de IJL

Abstract: Je présenterais comment caractériser les nanomatériaux en utilisant les instruments du centre de compétences soit par diffraction, diffusion, fluorescence X et spectroscopie Mossbauer. En effet, les instruments du centre de compétences permettent d'obtenir des informations d'ordre structurales, microstructurales et sur la forme des nanomatériaux. Le centre est également bien équipé pour caractériser l'évolution de ce type de matériaux en fonction de la température ou de l'environnement sous gaz neutre (N2, Ar air) ou oxydo-reductrice (H2, Co, CH4...)

Bio: Pascal Boulet - responsable du centre de compétences XGamma à IJL

- Ingénieur de recherche CNRS Hors Classe co-auteurs de plus de 175 publications (revues avec comité de lecture)
- Responsable du centre de compétences XGamma (diffusion, diffraction, tomographie, fluorescence par rayons X et spectroscopie Mössbauer) de l'Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine depuis la création de l'IJL. Centre composé de 10 diffractomètres de rayons X, 1 spectromètre de fluorescence X, 2 tomographes et 3 spectromètres Mössbauer, représentant 4 M€ d'investissement.

Expériences professionnelles

- Entrée au CNRS sur concours externe IR2 en 2006, passage IR1 en 2015, Hors Classe en 2024. Sept 2006-Nov 2006: Chercheur, ANKA synchrotron, Institut für Nuklear Entsorgung (INE), Karlsruhe, Allemagne
- Mars 1999-Mars 2005: Marie Curie Fellow ship cat.30 (2 ans) + 4 ans Chercheur, Institut des Eléments Transuraniens, Centre commun de la Commission Européenne, ITU JRC Karlsruhe, Allemagne
- *Février 1998-Fevrier 1999*: Post Doctorat Institut für Physikalische Chemie Universität Wien, Autriche
- Co-auteurs de près de 160 publications, plus de 40 communications orales, 1 conférence invitée, et plus de 200 communications par affiches.

Diplômes:

1997: PhD en Physique du Solide et Inorganique Moléculaire avec labélisation «
Europeus Doctorus », Université de Rennes I, France. Thèse financée dans le cadre du
programme européen Capital Humain et Mobilité. Séjours à l'Université de Vienne –
Institut für Physikalische Chemie (9 mois), Institut Nucléaire de Demokritos Athènes (8
mois) et Institut de chimie à Gênes (6 mois)

François-Xavier Ouf & Valérie Godefert

NanoMesureFrance: Un point d'entrée unique pour structure la filière des nanomatériaux autour de données fiables

Dr. François-Xavier OUF – Directeur de Programme Matériaux Avancés et Aérosols au LNE et secrétaire de l'association NanoMesureFrance Valérie GODEFERT – Chef de projet transverse au LNE

Abstract: Les nanomatériaux constituent de formidables sources d'innovation et irriguent l'ensemble des secteurs industriels dont notamment celui des cosmétiques. Leur utilisation est encadrée par des exigences réglementaires qui souffrent cependant d'un manque d'harmonisation sur les définitions et les méthodes d'essais à mettre en œuvre. Afin de répondre à ces enjeux l'association NanoMesureFrance a été créée en Septembre 2022 à travers un partenariat publicprivé entre le LNE, FEBEA et France Chimie. Cette structure d'ambition nationale vise à renforcer la confiance dans les nanomatériaux et les innovations associées & fédérer les acteurs français concernés en travaillant sur l'harmonisation et la validation des outils et méthodes nécessaires à la caractérisation de propriétés physico-chimiques clés des nanomatériaux à différentes étapes de leur cycle de vie. L'association, qui a bénéficié du soutien de la région Ile de France et de l'Etat français pour ses premières années d'existence, compte plus de 40 entités membres (producteurs et intégrateurs de nanomatériaux, fabricants d'instruments de mesure, prestataires de services, laboratoires et plateformes académiques). L'objectif de cette communication est tout d'abord de présenter les ambitions de l'association puis de détailler les actions menées au sein de NanoMesureFrance afin de répondre aux problématiques analytiques identifiées en lien avec l'identification des nanomatériaux et la caractérisation de leurs propriétés physico-chimiques. www.nanomesurefrance.fr

Bio: François-Xavier Ouf: Après vingt années comme chercheur au sein de l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN) dans le domaine des aérosols, le Dr. François-Xavier Ouf a rejoint le LNE en septembre 2021 en tant que Coordinateur R&D du centre d'innovation NanoMesureFrance puis en tant que Directeur de Programme Matériaux Avancés et Aérosols en décembre 2024. Il est l'auteur de plus de 50 publications et est habilité à diriger des recherches depuis 2016. Son expertise en métrologie des aérosols ainsi qu'en caractérisation physico-chimique des matériaux est mise à contribution dans le cadre des activités de l'association NanoMesureFrance et du LNE.

Bio: Valérie Godefert: Ingénieure en science des polymères, contribue à développer des références et des protocoles fiables pour l'industrie et la réglementation au Laboratoire National de Métrologie et d'Essais (LNE), où elle exerce depuis plus de 15 ans. Son travail soutient l'innovation et la sécurité dans les secteurs clés des nanotechnologies.

Daniel Lacour

Magnetic textures imaging by Scanning NV magnetometry.

Abstract: Nitrogen-Vacancy (NV) scanning magnetometry uses a single atomic-scale defect in diamond—called an NV center—as a quantum sensor to detect magnetic fields with nanometric precision. By scanning this diamond tip across a sample and reading its spin state via optically detected magnetic resonance (ODMR), we can map magnetic field distributions with spatial resolution below 50 nm. This technique operates under ambient conditions and is especially powerful for studying nanoscale magnetism in materials. In this presentation, I will describe the operating principle of a novel magnetic microscopy technique. Several application examples will also be presented, highlighting the potential of this method for investigating magnetic phenomena at the nanoscale.

Bio: After a Phd (1999-2002) dedicated to the tunnel magnetoresistance and it's application (collaboration between Université de Lorraine and Laboratoire Albert Fert) D. Lacour worked as postdoctoral researcher in the Hitachi GST laboratory of San Jose CA (2003-2005) were he worked on magnetic nano-devices. In 2006 he was appointed to the CNRS as research staff member. His field of expertise adresses Spintronic and Nano-magnetism.

